An Official Publication of Enugu State University of Science & Technology ISSN: (Print) 2315-9650 ISSN: (Online) 2502-0524

This work is licenced to the publisher under the Creative Commons Attribution 4.0 International License.

## Journal of Experimental Research

March 2019, Vol 7 No 1

Email: editorinchief.erjournal@gmail.com editorialsecretary.erjournal@gmail.com

Received: July 2018 Accepted for Publication: Jan., 2019

# Suitability Of Nigerian (Warsale) Bentonitic Clay For Oil Well Drilling Mud Formulation

## \*Shuwa SM<sup>1</sup>, Mohammed-Dabo IA<sup>1</sup>, Dewu BBM<sup>2</sup>.

Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria <sup>2</sup>Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria

\*Author for Correspondence: smshuwa@yahoo.com, smshuwa@abu.edu.ng

#### Abstract

Nigerian oil and gas drilling operations are highly depended on the imported bentonite for use as drilling fluid. The importation drains the nation's foreign reserve despite the fact that the country is equally blessed with huge deposit of this natural resource even though of inferior quality. This research characterized the Warsale montmorillonite clay from Dikwa formation. The clay was beneficiated (wet and dry) using Na<sub>2</sub>CO<sub>3</sub> and the beneficiated drilling muds formulated. Drilling fluids formulated from the beneficiated clay did not possess the minimum rheological properties for use in oil and gas drilling operations. However, an improvement in rheological and filtration properties was observed when beneficiated with Na<sub>2</sub>CO<sub>3</sub> and treated with CMC. The optimum values for plastic viscosity and gel strength were obtained at 6-10% wt Na<sub>2</sub>CO<sub>3</sub> concentrations. The fluid loss of muds from Warsale bentonite was improved by about 50% when treated with Carboxy-Methyl-Cellulose (CMC) and meets the API requirements. The pH and sand content of the muds also fall within the API standards. The rheological and filtration properties of the local clay were found to be inferior to the reference Wyoming bentonite due to low concentrations of smectites and high levels of contaminants in the compositions of the local clays. However, this study shows that given the proper conditioning, beneficiated Warsale clay will give a good promise for drilling purposes at optimum sodium carbonate and additives concentrations.

Keywords: Drilling fluid, Warsale clay, Dikwa formation, Bentonite, Oil well

## **INTRODUCTION**

dependent on the petroleum sector. Contribution dominant or as an abundant exchangeable ion of petroleum to the national revenue is about 70 typically has very high swelling capacities and percent, with more than 90 percent of foreign forms a gel-like mass when added to water. exchange earnings coming from oil exports. The petroleum industry is dominated by multinationals, with little participation by indigenous companies. In order to address this problem, the local content policy of the Federal government was initiated through N.N.P.C. Government has set a minimum target of 70 percent by 2010 (Ogbeide & Audu, 2006). Even though, the set target was not achieved but significant improvement was made in that respect. Drilling is the major activity in the upstream sector and the major component in the success of a drilling operation is the performance of a drilling fluid. The importance of clay and clay minerals in drilling industry is evident from the fact that clays are added to drilling fluids to

clay in drilling fluid formulation is Bentonite. The economy of Nigeria is highly Bentonite having sodium (Na<sup>+</sup>) as either the Bentonite in which exchangeable calcium ( $Ca^{++}$ ) is more abundant than other ions has much lower swelling capacities than sodium varieties. Most of the marine shale found in Nigeria are enriched in calcium and mixed bentonite (RMRDC, 2010). Bentonitic clays exist in the north-east quadrant of Nigeria (Borno, Yobe, Gombe, Taraba, and Adamawa) where a probable reserve of more than 700 million tonnes has been estimated. The purpose of this research is to improve the calcium based Warsale bentonitic clay through chemical activation and investigate its rheological and filtration properties as a constituent of oil well drilling fluids. The present level of bentonite consumption for oil drilling was put at about 60,000 MT (RMRDC, 2010). There is an anticipated increase in consumption due to exploration works especially in Benue trough. Sokoto and Chad basin.

imported bentonite (mostly Wyoming) as seeks to increase the number of candidate component of the drilling fluid in the oil and gas Nigerian bentonitic clays that can be considered industry in Nigeria, many researchers have for oil and gas drilling fluid formulation. investigated clavs from various deposits across the nation. Folade et al (2007) evaluated Pindiga clay and improved its rheological properties obtaining a high 600rpm rheometer reading. Sample Collection and Preparation (Okogbue, 2008) examined the geochemical characteristics of bentonitic clays from the pit dug to a depth of about 3ft at Warsale village South-eastern part of the nation and established of Dikwa province of Borno State of Nigeria. their potential for use in drilling mud Dikwa is situated 86km from the Borno State formulation. Yola (Adamawa State) capital, Maiduguri and located at latitude 12.035 montmorillonite clay was characterized and degrees north and longitude 13.92 degrees east. beneficiated. The results obtained revealed that The Warsale village is located 30km eastwards of the clay was Ca-based montmorillonite. Dikwa town. About 30kg of the sample was Treatment improved its rheological behaviour crushed to finer particles and sun dried for three but fell below the required standard for use in days to ease pulverising and sieving. The sample drilling mud formulation (James et al. 2008). was then ground to powder with the aid of a jaw Adeleve et al. (2009) treated locally sourced crusher and ball mill machine. It was then shaken betonitic clay from the North-west of the country with test sieve shaker to obtain 63um particle with locally sourced gum Arabic and sodium size to suit API specifications for bentonite carbonate and analysed its rheological properties using factorial design. The work gave an express Sample Characterization method of determining the required treatment of **Determination of Chemical and Mineralogical** the local clay. Ubakala clay from Abia State was Composition evaluated for its potential as drilling fluid component. Its beneficiation with Na<sub>2</sub>CO<sub>3</sub> and compositions of the raw Warsale clay sample was improvement with CMC enhanced its plastic determined using X-ray fluorescence, XRF viscosity by up to about 1207% (Apugo-Nwosu (model Pan analytic B.V PW4030/45B) and Xet al. 2011). Extensive characterization, ray Diffractometer (model Schmadzu 6000) beneficiation and property improvement works respectively. Wyoming bentonitic clay was used were carried out on clays from Pindiga and Fika as the standard (control) hence it was equally formations in the North-eastern part of the characterized for the chemical and mineralogical country (Dewu et al. 2011a; Dewu et al. 2011b; composition. The hydrometer method was used Arabi et al. 2011; Dewu et al. 2012). Local raw for particle size distribution analysis of the clay materials were employed to modify the pH of the samples whereas, the Bentonite Laboratory mud by Okorie (2009).Water- and syntheticbased drilling muds were formulated using raw (Inglethorpe, 1993) was used for cation materials. The low value pH muds were exchange capacity (CEC) determination. improved to the required standard of between 9.5 and 12.5 (Ajugwe et al. 2012; Udoh & Itah, Chemical Beneficiation (Activation) 2012). Unprocessed Ota (Ogun State) Kaolin was employed as a weighting additive in drilling the 63µm fraction obtained above and the fluid formulation (Adebayo & Ajayi, 2011). predominant calcium bentonite was converted to Recently, Bilal used many analytical techniques sodium bentonite through ion exchange using to characterize some local Bentonitic clays from sodium carbonate as the activating agent. Two Chad Basin and Benue Trough. Analytical modes (wet and dry) of beneficiation were methods such as Fourier transform infrared applied for comparison purpose. spectroscopy (FTIR) and scanning electron technology, 2 to 14% wt. of Na<sub>2</sub>CO<sub>3</sub> were added to

microscopy (SEM) were utilized (Bilal, 2015: In a quest to provide substitute for the Bilal et al. 2016; Bilal et al. 2017). This work

### MATERIALS AND METHODS

The raw clay sample was collected from a

Chemical and mineralogical Manual of the British Geological survey agency

Chemical activation was carried out on In the wet intervals of 2%. The suspension was stirred displayed by the viscometer on the screen; it was vigorously and allowed to stand for 2 hours in also taken and recorded. The viscosity values order to ensure that proper ion exchange had obtained from these measurements are in taken place. The beneficiated samples were oven centipoises (cP). After additional ten minutes and dried to reduce moisture content and ground to ten seconds, the instrument displayed plastic powder using ball mill. The ground sample was

sieved again to obtain 63µm fraction. The dry technology was carried out by dry the values were recorded. The plastic viscosity is blending the sodium carbonate with the raw in cP, the gel strength and yield point in pounds bentonitic clay sample powder using the above concentrations. It is usually considered that ion viscosity is the dial reading at 600rpm divide by 2 exchange takes place during clay hydration in and it is expressed in cP. water after formulation of the mud.

### **Drilling Mud Formulation**

24.5g of the beneficiated bentonitic clay at the The sample mud was poured in to the API filter various concentration of the sodium carbonate press cell (not more than <sup>3</sup>/<sub>4</sub> cup). The filter cell was weighed with the aid of an electric weighing was then placed in the frame. The top cap was balance. The samples were poured into the mixer placed to ensure that the gasket was firmly cups containing 350ml of water, thoroughly secured in place. The top cap was held tight with mixed and then agitated vigorously with the aid the screw and a graduated cylinder placed under of Hamilton Beach Mixer for 10 minutes to the drain tube to collect the filtrate. Having obtain a homogeneous mixture and improve ensured that the unit was tight, 100psi (690kpa) hydration of the clay.

In order to further improve the rheological and filtration properties of the (in about 30 seconds). A stop watch was set for 30 formulated sample muds, 1g of carboxymethyl cellulose (CMC) was separately added to the pressure application. The volume of the filtrate or mud samples with a view to ascertain their effectiveness on the mud samples. The mixture cylinder and recorded in millilitres (ml). After of clay, water and the additive was thoroughly making sure that all the pressure has been mixed and the homogeneous mixture allowed to relieved, the cell was removed from the frame, age for 24 hours. The control mud was formulated using Wyoming bentonite as above. paper was then replaced. Filtration and rheological tests were carried out on the aged muds.

### **Drilling Mud Testing Procedures**

## Plastic Viscosity, Apparent Viscosity, Yield Point and Gel Strength Determination

Ofite 900 model viscometer was used for these measurements. The procedure provided by the manufacturer was followed. The sample mud was poured in to the sample cell and the rotor sleeve of the viscometer was immersed in the mud exactly to the scribed line. The mud was allowed to stabilize for ten seconds before the dial reading at 600rpm ( $\theta_{600}$ ) was taken and recorded from the screen. After additional ten

the bentonite powder suspension in water at seconds the dial reading at 300rpm ( $\theta_{300}$ ) was viscosity (PV), yield point (YP), next ten seconds gel strength and next ten minutes gel strength. All per hundred feet square  $(lb/100ft^2)$ . The apparent

## Fluid Loss Determination

Low temperature API filter press was In order to formulate the sample mud, used for fluid loss or water loss measurement. pressure from the mini carbon dioxide cartridge was applied to the filter cell through a regulator minutes. The test period begins at the time of fluid loss was then read off from the graduated disassembled and the mud discarded. The filter

### Sand Content Determination

Sand content of the mud samples were estimated by the use of Baroid sand screen set. The set consisted of a 200-mesh sieve 2.5in.(63.5mm) in diameter, a funnel to fit the screen and a glass measuring tube. The glass measuring tube was filled with the sample mud to the indicated mark. Water was added to the next mark and the mouth of the tube closed and shaken vigorously. The mixture of mud and water was poured out through the screen, and the liquid passing through the screen was discarded. More water was added to the tube, shaken, and again

the water passing through the screen was clear. Bentonitic Clay Samples The sand retained on the screen was washed to free it of any remaining mud. The quantity of sand that settled in the calibrated tube was then read and recorded as the sand content of the mud in percentage by volume of the mud.

## **RESULTS AND DISCUSSION Bentonitic Clay Samples Characterization** Chemical Analysis

Table 1 presents the chemical composition of the raw Warsale bentonitic clay and Wyoming bentonite as obtained using an XRF analysis. It can be observed from the table that the  $Al_2O_3/SiO_2$  was approximately 1/3 in Wyoming bentonite as expected of smectites, which is the main component of bentonites. This ratio was higher in Warsale bentonitic clay. The obtained value is in agreement with the results reported by Falode et al (2007), Deer et al (1992) and Kirk-Othmer (1980). It can also be noticed that the Wyoming bentonite has higher percentage of Na<sub>2</sub>O (3.22%) than the Warsale bentonitic clay (0.10%) which is an indication  $\overline{}$ that the Wyoming bentonite consist of sodium montmorillonite. Warsale bentonitic clay Mineralogical Analysis however has higher percentage of CaO (2.02%) when compared with Na<sub>2</sub>O present (0.10%) carried out on the clay samples in order to which indicates the presence of calcium ascertain their mineralogical composition. This montmorillonite as expected of Nigerian bentonitic clays (Falode et al. 2007). The Warsale bentonitic clay sample showed high presence of K<sub>2</sub>O than the Wyoming bentonite. This causes less hydration of clay particles in water. The potassium cation is thought to prevent hydration of clays due mainly to its size. The potassium cation hydrates very little and is almost the same diameter as the spacing between the oxygen in the outer silica tetrahedrons of the clays (Darley & Gray, 1988). It was also observed that the Wyoming bentonite is richer in MgO, which is commonly used to enhance gel strength as explained by Falode et al (2007). The Wyoming bentonite also shows high percentage of BaO, an of the drilling fluids. This could indicate that the indication of the presence of Barite (BaSO<sub>4</sub>), a non clay mineral.

poured on to the screen. This was repeated until Table 1: Chemical Composition of the

| Chemical compound | Wyoming (%) | Warsale (%) |
|-------------------|-------------|-------------|
| $Al_2O_3$         | 14.2        | 19.20       |
| SiO <sub>2</sub>  | 43.6        | 48.09       |
| Na <sub>2</sub> O | 3.22        | 0.10        |
| $K_2O$            | 0.93        | 1.81        |
| CaO               | 7.05        | 2.02        |
| TiO <sub>2</sub>  | 1.30        | 2.07        |
| MnO               | 0.11        | 0.11        |
| $Fe_2O_3$         | 14.50       | 18.18       |
| NiO               | 0.02        | 0.02        |
| CuO               | 0.14        | 0.07        |
| MgO               | 2.40        | 1.24        |
| BaO               | 11.0        | ND          |
| PbO               | 0.06        | ND          |
| RuO               | 0.56        | ND          |
| ZnO               | ND          | 0.04        |
| SrO               | ND          | 0.05        |
| $ZrO_2$           | ND          | 0.11        |
| $Cr_2O_3$         | ND          | 0.07        |
| Others            | ND          | 6.82        |
| TOTAL             | 100.00      | 100.00      |

X-ray diffraction (XRD) analysis was is usually the most common analysis carried out to determine the type of minerals in clay deposits. The Wyoming bentonite sample composed mainly of smectite (montmorillonite), sanderite, barite, morimotoinite and muscovite (Table 2). Other minerals detected in trace amounts are zinc arsenate, behierite and ammonium chlorate. The smectite dominates the Wyoming bentonite (about 50%) as expected. The smectite clay mineral is responsible for the swelling and high rheological and filtration properties of the drilling fluids. The Wyoming bentonite also shows high amount of barite (about 20%), a non clay mineral used in drilling fluid as a weighting agent to increase the density Wyoming bentonite might have been treated with barite. It was also observed that the local bentonitic clay sample composed mainly of

An Official Publication of Enugu State University of Science & Technology ISSN: (Print) 2315-9650 ISSN: (Online) 2502-0524 This work is licenced to the publisher under the Creative Commons Attribution 4.0 International License.

smectite, quartz, kaolinites, gismondine and dominant minerals. This might be responsible for serpentine.

bariandite were detected in small amounts. application. Gismondine, a non-clay mineral, Unlike Wyoming bentonite, where the dominant which belongs to the zeolite group is the mineral is smectite, in the Warsale clay sample, dominant mineral in the composition of the local smectite and gismondine were found to be the

the inferior performance of this local clay when Minerals like berlinite, marshite and compared to Wyoming in terms of drilling bentonitic clay.

| WYOMING BENTONITE |                        | WARSALE CLAY |                        |  |
|-------------------|------------------------|--------------|------------------------|--|
| Mineral           | <b>Composition</b> (%) | Mineral      | <b>Composition</b> (%) |  |
| Smectite          | 50                     | Smectite     | 33.26                  |  |
| Barite            | 19.4                   | Quartz       | 9.43                   |  |
| Sanderite         | 10                     | Kaolinite    | 5.35                   |  |
| Morimotoinite     | 7.9                    | Gismondine   | 35.31                  |  |
| Muscovite         | 6.9                    | Serpentine   | 6.09                   |  |
| Others            | 5.8                    | Others       | 10.56                  |  |

#### Table 2: Summary of Mineral Composition of the Clay Samples

## Particle Size Distribution

was conducted in order to ascertain the composition of clay, silt and sand in the percentage of particle size that constitute the clay Wyoming and Warsale samples are 47, 33 and 20 sample (sand, silt and clay). Table 3 presents the and 65, 16 and 19 respectively. particle size distribution of the Wyoming and

Warsale bentonitic clay samples. From the table Basic particle size distribution analysis it can be observed that, the percentage

**Table 3: Particle Size Distribution of the Clay Samples** 

| Sample  | 40 seconds | 2hours  | % Clay     | % Silt (0.002- | % Sand (0.05- |
|---------|------------|---------|------------|----------------|---------------|
|         | reading    | reading | (<0.002mm) | 0.05mm)        | 2mm)          |
| Warsale | 40         | 32      | 65         | 16             | 19            |
| Wyoming | 33         | 23      | 47         | 33             | 20            |

sample is less when compared with the local clay 86meq/100g which falls within the general range samples, this may not be unconnected with the of (80-100) meq/100g (Table 4). This agrees with presence of high amounts of non-clay minerals the values reported by Falode et al (2007). It can like barite in the composition of the Wyoming be seen from the table that, the untreated local clay as shown by the result of the mineralogical bentonitic clay sample has low CEC, but when analysis. The sand content of all the muds was treated with 6% Na<sub>2</sub>CO<sub>3</sub> about 50% increase in found out to be less than 0.8% which is below the CECs was observed. This is still much less than maximum of 2% based on API standard

### Cation Exchange Capacity

adsorbed expressed in milliequivalents per 100g high CEC swells greatly and forms viscous of dry clay. High CEC will have a positive impact suspensions at low concentrations of clay to the hydration and swelling capability of the particularly when sodium is in the exchange clay suspensions. Table 4 shows the CEC values positions. of the investigated samples. The CEC of the

The percentage clay of the Wyoming Wyoming bentonite was found to be the CEC value of Wyoming bentonite. The CEC of clay and the species of cations in the exchange positions are a good indication of the colloidal The CEC is the total amount of cations activity of the clay. Clay such as smectite that has

Shuwa et al: suitability of Nigerian bentonitic clay for oil well drilling

| Parameter     | Untreated Warsale | Treated Warsale with 6% Na <sub>2</sub> CO <sub>3</sub> | Wyoming |
|---------------|-------------------|---------------------------------------------------------|---------|
| CEC, meq/100g | 33                | 50                                                      | 86      |

**Table 4: Cation Exchange Capacities of the Clay Samples** 

# **Rheological Properties of the Sample Muds** Variation of Na<sub>2</sub>CO<sub>3</sub> Concentration in the Mud with the Dial Reading at 600rpm ( $\theta_{600}$ )

The  $\theta_{600}$  measurements on the sample muds beneficiated with Na<sub>2</sub>CO<sub>3</sub> showed increase in the dial reading at 600rpm as concentration of Na<sub>2</sub>CO<sub>3</sub> increased from 2% to 8% for the clav sample muds. The highest value recorded was 7.8 at 8% Na<sub>2</sub>CO<sub>3</sub> concentration. This is the optimal value for the clay sample

muds without treatment. Fig.1 represents the plot of  $\theta_{600}$  against the Na<sub>2</sub>CO<sub>3</sub> concentration for the clay sample muds.

When the sample muds were treated with 1g of sodium carboxymethylcellulose (CMC) the values increased to the maximum of 18.1 at 8% Na<sub>2</sub>CO<sub>3</sub> concentration for Warsale sample muds as shown in Fig. 2. This indicates that the sodium carboxymethyl cellulose improved on the dial reading at 600rpm ( $\theta_{600}$ ).



Fig. 1: Variation of Na<sub>2</sub>CO<sub>3</sub> Concentration with Dial Reading for Warsale Muds without Treatment

seen from the result.

## Effect of Na<sub>2</sub>CO<sub>3</sub> Concentration on Plastic Viscosity

The commonly used direct indicating viscometer was specifically designed to facilitate the use of the Bingham plastic model. The PV is the slope of the Bingham plastic line. Plastic viscosity is used as an indicator of the size, shape,

The CMC polymer chain does the work distribution and quantity of solids, and the of binding the flocculating particles in the mud viscosity of the liquid phase. The effect of together and the presence of Na<sub>2</sub>CO<sub>3</sub> aided the Na<sub>2</sub>CO<sub>3</sub> indicates an upward trend in plastic process. The wet method of beneficiation proved viscosity as the concentration of Na<sub>2</sub>CO<sub>3</sub> present better than the dry technology method, as can be in the mud increased from 2% to 8%. The highest plastic viscosity was observed at 6%-8% Na<sub>2</sub>CO<sub>3</sub> for the untreated sample muds and treated with CMC. Figs 3 & 4 show this trend. This shows that beneficiation improved the rheological properties of calcium based clays as demonstrated by Falode et al (2007) and Song et al (2005). The PV depends largely on the bulk volume of solids in the mud and on the viscosity of suspending liquid. The Na<sub>2</sub>CO<sub>3</sub> converts the

calcium bentonite to sodium bentonite and hence causes dispersion of clay. The dispersion is commonly used to describe subdivision of particle aggregates in a suspension and subdivision of clay platelet stacks as a result of electrochemical effect. The dispersion increased the PV of the sample muds until an equilibrium is reached where the PV is at its maximum value i.e. at optimum concentration of Na<sub>2</sub>CO<sub>3</sub>.

Since the dial reading at 600rpm is analogous to shear stress and the relationship between shear stress and plastic viscosity is proportional, increase in  $\theta_{600}$  results to increase in PV. The wet method also, proved more effective than the dry technology in terms of PV improvement.

# Effect of Na<sub>2</sub>CO<sub>3</sub> Concentration on Gel Strength

Gel strengths indicate the gelation or thixotropic properties of a drilling fluid and are

the measurements of attractive forces under static conditions in relationship to time. Yield point, conversely, is a dynamic property. However, gel strength and yield point have a proportional relationship. Increase in one may results in increase in the other and vice versa. Figs 5 and 6 represent variation of Na<sub>2</sub>CO<sub>3</sub> Concentration with gel strength of the muds treated with CMC and untreated muds for the sample clay. An increase in gel strength and yield point was observed when the Na<sub>2</sub>CO<sub>2</sub> concentration in the mud increased from 4% to 8% for the sample muds

Further reduction in gel strength and yield point was observed from the 8% to 14% Na<sub>2</sub>CO<sub>3</sub> concentration for the sample muds. The same trend was observed for muds treated with 1g CMC. Gel strength and yield point depend on the presence of colloidal clays, and contamination by inorganic salts.



Na<sub>2</sub>CO<sub>3</sub> Concentration (%wt)

## Fig. 2: Variation of Na<sub>2</sub>CO<sub>3</sub> Concentration with Dial Reading a 600rpm For Warsale Muds Treated with 1g of CMC

aggregation of clay platelets. Flocculation is positions slowly (at 10%). Evidently, the limited to lose association of clay platelets which attractive and repulsive forces are nearly in forms flocs or gel structures, while aggregation balance. Further increase in  $Na_2CO_3$ refers to the collapse of the diffuse double layers concentration led to decrease in gel strength and the formation of aggregates of parallel which can be attributed to the formation of platelets. Where flocculation causes an increase aggregates of parallel platelets as explained by in gel strength, aggregation causes a decrease Darley and Gray (1988). Ideally, the gel strength because it reduces the number of units available should just be high enough to suspend barite and to build gel structures and the surface area drill cuttings when circulation is stopped. available for particle interaction. When the Additionally, initial gel strength in a weighted Na<sub>2</sub>CO<sub>3</sub> concentration was increased from 2% to mud system must be sufficient to prevent settling 10% gel strength continues to rise because of

Gel strength is due to flocculation and flocculation, but the particles reach equilibrium of weight materials.



Fig. 3: Variation of Na<sub>2</sub>CO<sub>3</sub> Concentration with Plastic Viscosity for Warsale Muds without Treatment



Fig. 4: Variation of Na<sub>2</sub>CO<sub>3</sub> Concentration with Plastic Viscosity for Warsale Muds Treated with 1g of CMC









Fig. 6: Variation of Na<sub>2</sub>CO<sub>3</sub> Concentration with Gel Strength for Warsale Muds Treated with 1g of CMC

#### **Filtration Properties of the Sample Muds**

The ability of the mud to seal permeable formations exposed by the bit with a thin, low permeability filter cake is another major requirement for successful completion of the hole. Because the pressure of the mud column must be greater than the formation pore pressure in order to prevent the inflow of formation fluids, the mud will continuously invade permeable formations if a filter cake is not formed.

### Effect of Na<sub>2</sub>CO<sub>3</sub> Concentration on Fluid Loss

The fluid loss properties of a mud indicate how well the mud forms a seal against

permeable formations. Fig. 7 illustrates the fluid loss behaviour of the sample muds at 6%, 8% and 10%  $Na_2CO_3$  concentration. The muds without treatment displayed poor filtration properties, but when treated with CMC a dramatic improvement in fluid loss was observed. See Table 5 for API specifications for drilling fluids. 50% reduction in fluid loss was observed when treated with 1g CMC for all the sample muds tested. The reduction was more pronounced at lower  $Na_2CO_3$  concentration. The CMC being a synthetic polymer does the work by using its polymer chain to bind the flocculated particles together in the presence of salt concentration.



Fig. 7: Filtration Properties of Warsale Sample Muds treated with CMC

An Official Publication of Enugu State University of Science & Technology ISSN: (Print) 2315-9650 ISSN: (Online) 2502-0524 This work is licenced to the publisher under the Creative Commons Attribution 4.0 International License.

#### Shuwa et al: suitability of Nigerian bentonitic clay for oil well drilling

This indicates that the CMC is a good filtration control agent. The result obtained corroborates the work of Falode et al (2007) who improved on the filtration properties of Pindiga clay mud using starch. High fluid loss mud will build up a thicker, sticker wall cake that is likely to lead to problems such as differential sticking. This phenomenon occurs when part of the drill string bears against the side of the hole while drilling, and erodes away part of the filter cake. When rotation of the pipe is stopped, the part of the pipe in contact with the cake is isolated from the pressure of the mud column, and subject only to the pore pressure of the filter cake. The differential pressure thus created may be great enough to prevent the pipe from being moved. Furthermore, filtration properties must be controlled in order to prevent thick filter cakes from excessively reducing the gauge of the borehole. Ideally the mud should build up a thin, tough, and impermeable cake fairly quickly.

| <b>Table 5.0:</b> <i>A</i> | API | Standa | ards f | for I | Drilling | Fluids |
|----------------------------|-----|--------|--------|-------|----------|--------|
| 14010 01011                |     |        |        |       |          |        |

| Parameter              | Specification   |
|------------------------|-----------------|
| Dial Reading at 600rpm | 30cp minimum    |
| Plastic viscosity      | 8cp-10cp        |
| Yield Point            | 3* PV maximum   |
| Fluid Loss             | 15ml/30 minutes |
| Sand Content           | (1-2%) maximum  |
| pH Level               | 8.5-12.5        |
| Moisture Content       | 10% maximum     |
| YP/PV                  | 3               |

# CONCLUSION

Chemical activation of the local bentonitic clay was carried out using Na<sub>2</sub>CO<sub>3</sub> as the activating agent. Chemical and mineralogical compositions analyses of the clay samples were undertaken using the X-ray fluorescence and Xray diffraction methods respectively. Cation exchange capacity and particle size distribution analysis were equally conducted using the methylene blue test and hydrometer method respectively. Rheological and filtration tests were conducted on drilling fluids formulated from the Warsale bentonitic clay sample. The following conclusions can be made from this work.

- 1. The sample muds formulated with the beneficiated Warsale bentonitic clay showed little improvement on flow properties and falls short of API standard. However, improvements in rheological and filtration properties were observed when treated with CMC.
- 2. The optimum values for yield point and plastic viscosity were obtained at 6% and 8% Na<sub>2</sub>CO<sub>3</sub> concentration for the Warsale sample mud, while the gel strength was obtained at 10%.
- 3. From the results obtained, the yield point and gel strength of the sample muds formulated using Warsale bentonite are low. The plastic viscosity of the sample muds from the Warsale local clay when treated with CMC meets the API standards required for drilling fluid. Evidently, muds from Warsale bentonitic clay displayed poor filtration properties, but when treated with CMC the filtration property was improved and found to be in consonance with API standards. In all cases the wet method of beneficiation gave a better results than the dry technology method.
- 4. Treatment of the sample muds with sodium carboxymathyl cellulose (CMC) improved both rheological and filtration properties, and therefore confirmed that CMC is a good rheological and filtration control agent.

## REFERENCES

- Adebayo TA, Ajayi O. (2011). Unprocessed Ota Kaolin As A Weighting Additive In Drilling Fluid . Asian Transactions on Engineering 1(3).
- Adeleye JO, Salam KK, Ayetunde IA. (2009). Analysis of Rheological Properties of Treated Nigerian Clay using Factorial Design. European Journal of Scientific Research 37(3), 426-438.
- Ajugwe C, Oloro J, Akpotu D. (2012). Determination Of The Rheological Properties Of Drilling Fluid From Locally Sourced Clay From Various Geographical Areas. Journal of Engineering and Applied Science 4, 38-49.
- Apugo-Nwosu TU, Mohammed-Dabo IA, Ahmed AS, Abubakar G, Alkali AS, Ayilara SI. (2011). Studies on the Suitability of Ubakala Bentonytic Clay for Oil Well Drilling Mud Formulation. British Journal

of Applied Science and Technology 1(4), 152-171.

- Arabi AS, Ibrahim AA, Muhammad AM, Kwaya MY, Mustapha S. (2011). Comparative Evaluation of Rheological Properties of Standard Commercial Bentonite and a Locally Beneficiated Clay from Marine Deposit in Upper Benue Basin, Nigeria. British Journal of Applied Science & Technology 1(4), 211-221.
- Bilal S, Mohammed-Dabo IA, Dewu BBM, Momoh OR, Funtua II, Oladipo MOA, Arabi AS, Muhammad T. (2015). Effect of Quartz (free silica) Removal on the Quality of Nigerian Bentonytic Clays for Application in Drilling Fluid Formulation. Journal of Experimental Research. 3;(2): 98-101.
- Bilal S, Mohammed-Dabo IA, Dewu BBM, Momoh OR, Aminu AH, Abubakar U, Adamu MS, Mashi AH. (2016). Determination of Morphological Features and Molecular Interactions of Nigerian Bentonytic Clays using Scanning Electron Microscopy (SEM). Bavero Journal of Pure & Applied Sciences 9(2), 279-285.
- Okugbue CO, Eneleri GE, (2008), Geochemical and Geotechnical Characteristic and the Potential for use in Drlilling Mud of some Clay Bodies in Southestern Nigeria. Journal of Mining and Geology 44:(2).
- Properties of Drilling and Completion Fluids, 140-183. Houston: Gulf Publishing.
- to the Rock-Forming Minerals, 279-606. London: Longman.
- Mohammed-Dabo IA, Muhammad AM. (2011b). Improvement of Rheological Properties of Bentonytic Clays using Sodium Carbonate and Synthetic Viscosifier. International Archive of Applied Science & Technology 2;(2): 43-52.
- Dewu BBM, Oladipo MOA, Funtua II, Arabi AS, Mohammed-Dabo IA, Muhammad AM, Hamidu I. Bentonytic Clays from Pindiga Formation in Benue Trough. American Journal of Engineering & Applied Sciences 4;(4): 497-503.

- Dewu BBM, Oladipo MOA, Funtua II, Arabi AS, Mohammed-Dabo IA, Muhammad AM. (2012). Evaluation of Rheological and Other Physical Properties of Bentonitic Clays From Fika Formation in Parts of North-Eastern Nigeria. Petroleum Technology Development Journal. 2;(1): 12-23.
- Falode OA, Ehinola OA, Nebeife PC. (2007). Evaluation of Local Bentonytic Clay as Oil Well Drilling Fluids in Nigeria. Applied Clay Science 39, 19-24.
- Inglethorpe SDJ, Morgan DJ, Highley DE, Bloodworth AJ. (1993). Industrial Minerals Laborotory Manual; BENTONITE. Technical Report WG/93/20 Mineralogy and Petrology Series. London: British Geological Survey Agency.
- James OO, Adeniran FAA, Adebunmi EO, Adekeye JID. (2008). Beneficiation and Characterization of Bentonite from North-Eastern Nigeria. Journal of North Carolina Academy of Science 124(4), 154-158.
- Kirk-Othmer. (1980). Encyclopaedia of Chemical Technology, Vol.3. New York: John Wiley & Sons.
- Ogbeide, S., & Audu, T. (2006). The Relevance of Local Content in the Development of Nation's Economy. Petroleum Training Journal. 2;(1):60-64.
- Darley HCH, Gray GR. (1988). Composition and Okorie OM. (2009). Modification of Drilling Fluid pH with Local Nigerian Additives. Petroleum Technology Development Journal. 2;(1): 1-11.
- Deer WA, Howie RA, Zussman J. (1992). An Introduction RMRDC. (2010). Non-Metallic Mineral Endowments in Nigeria: Bentonite. Abuja: Raw Materials Reserch and Development Council.
- Dewu BBM, Oladipo MOA, Funtua II, Arabi AS, Sabiu B. (2017). Determination of Montmorillonite Content in Nigerian Bentonytic Clays using Fourier Transform Infrared Spectroscopy (FTIR). Journal of Experimental Research 5(2), 27-34.
  - Song S, Zhang Y, Liv T, Zhaw M. (2005). Process for Upgrading Calcium Bentonite. Journal of Dispersion Science & Technology. 20;(3): 375-379.
  - (2011a). Evaluation and Beneficiation of Udoh FD. (2012). Formulation of Synthetic-Based Drilling Fluid Using Palm Oil Derived Ester. Journal of Microbiology, Biotechnology & Environmental Science. 14;(2):175-180.